Central WENO schemes for hyperbolic systems of conservation laws
نویسندگان
چکیده
We present a family of high-order, essentially non-oscillatory, central schemes for approximating solutions of hyperbolic systems of conservation laws. These schemes are based on a new centered version of the Weighed Essentially Non-Oscillatory (WENO) reconstruction of point-values from cell-averages, which is then followed by an accurate approximation of the fluxes via a natural continuous extension of Runge-Kutta solvers. We explicitly construct the third and fourth-order scheme and demonstrate their high-resolution properties in several numerical tests. Résumé. Nous présentons une famille de schémas centrés ENO d’ordre élevé pour des solutions approchées de systèmes hyperboliques de lois de conservation. Ces schémas reposent sur une nouvelle version centrée de la reconstruction ENO à poids (WENO) des valeurs ponctuelles à partir des moyennes sur les cellules, ce qui conduit à une approximation precise des flux grâce à une extension naturelle continue des solveurs Runge-Kutta. Nous construisons explicitement les schémas d’ordre trois et quatre et nous provons leurs propriétés de haute précision à travers des essais numériques. AMS Subject Classification. 65M10, 65M05. Received: April 7, 1998. Revised: July 1, 1998.
منابع مشابه
The comparison of two high-order semi-discrete central schemes for solving hyperbolic conservation laws
This work presents two high-order, semi-discrete, central-upwind schemes for computing approximate solutions of 1D systems of conservation laws. We propose a central weighted essentially non-oscillatory (CWENO) reconstruction, also we apply a fourth-order reconstruction proposed by Peer et al., and afterwards, we combine these reconstructions with a semi-discrete central-upwind numerical flux ...
متن کاملA Speed-Up Strategy for Finite Volume WENO Schemes for Hyperbolic Conservation Laws
In this paper, a speed-up strategy for finite volume WENO schemes is developed for solving hyperbolic conservation laws. It adopts p-adaptive like reconstruction, which automatically adjusts from fifth order WENO reconstruction to first order constant reconstruction when nearly constant solutions are detected by the undivided differences. The corresponding order of accuracy for the solutions is...
متن کاملHybrid WENO schemes with different indicators on curvilinear grids
In {J. Comput. Phys. 229 (2010) 8105-8129}, we studied hybrid weighted essentially non-oscillatory (WENO) schemes with different indicators for hyperbolic conservation laws on uniform grids for Cartesian domains. In this paper, we extend the schemes to solve two-dimensional systems of hyperbolic conservation laws on curvilinear grids for non-Cartesian domains. Our goal is to obtain similar adva...
متن کاملHigh-order central Hermite WENO schemes on staggered meshes for hyperbolic conservation laws
In this paper, we propose a class of high-order schemes for solving oneand two-dimensional hyperbolic conservation laws. The methods are formulated in a central finite volume framework on staggered meshes, and they involve Hermite WENO (HWENO) reconstructions in space, and Lax-Wendroff type discretizations or the natural continuous extension of Runge-Kutta methods in time. Compared with central...
متن کاملEssentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws
In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton-Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1999